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Jure Žalohar*, Marko Vrabec
University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Geology, Aškerčeva 12, SI-1000 Ljubljana, Slovenia
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a b s t r a c t

In the theory of Cosserat continuum, the faulting-related deformation of rocks is described using
translational and rotational degrees of freedom, producing definitions for a symmetric macrostrain
tensor and a skew-symmetric relative microrotation tensor. The macrostrain tensor describes the large-
scale deformation of the region, whilst the relative microrotation tensor describes the difference
between the large-scale regional rotation and local systematic microrotations of blocks between faults.
Faults are activated when the resolved shear stress in the direction of movement exceeds frictional
resistance for sliding, according to Amontons’s Law of Friction. The direction of slip along the faults
depends on the Cosserat strain tensor, which is defined as the sum of the macrostrain tensor and the
relative microrotation tensor. We develop a constitutive relation for the faulting-related strain of rocks
(cataclastic flow) based on the J-2 plasticity model for the Cosserat continuum, from which we derive the
generally asymmetric stress tensor. We also develop the Cosserat stress–strain inverse method for fault-
slip data analysis. We show that the geometry of fault systems is controlled by both the Cosserat strain
tensor and the stress tensor, and present a field example of a fault system that conforms to the
predictions of the Cosserat theory.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Paleostress and kinematic analyses of fault-slip data are gener-
ally performed within the frame of the classical continuum theory,
where the deformation of a body is described by three degrees of
freedom (the components of the translation vector) and where the
stresses and the strains are assumed to be symmetrical (e.g. Jaeger
and Cook, 1969; Angelier, 1994). Most of the techniques for fault-
slip data analysis also suppose that: (1) the stress/strain field at the
time of faulting was homogeneous; (2) the faults are independent
and do not interact; and (3) the blocks bounded by the faults do not
rotate (e.g. Angelier, 1994; Nemcok and Lisle, 1995; Nemcok et al.,
1999; Žalohar and Vrabec, 2007). These assumptions are obviously
oversimplified and are only acceptable in certain geological situa-
tions. In the last two decades considerable progress in under-
standing the effect of block (micro)rotations between the faults has
been made using the Cosserat continuum theory (Twiss et al., 1991,
1993; Twiss and Unruh, 1998; Figueiredo et al., 2004; Twiss and
Unruh, 2007). Twiss et al. (1991, 1993), and Twiss and Unruh (1998,
2007) were the first to recognize the influence of block (micro)-
rotations on fault-slip patterns. In the Cosserat continuum theory,
the direction of slip along the faults depends on the Cosserat strain
har).
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tensor and not on the stress tensor. From this it follows that the
patterns of slip along the faults are related in a systematic way to
the global deformation. The (paleo)stress can therefore be recon-
structed from fault-slip data provided the rheological behavior of
rocks and the constitutive relation between the stress and strain are
known. Twiss et al. (1991, 1993) and Twiss and Unruh (1998, 2007)
also studied the influence of relative microrotations on the geom-
etry of fault systems. They showed that, in addition to symmetric
fault systems with conjugate or orthorhombic geometry predicted
by the classical continuum theory, the Cosserat theory also predicts
monoclinic and triclinic fault systems.

This article aims to present a fault reactivation model for the
Cosserat continuum. We show that strain is not the only
parameter affecting the geometry of the slip-capable fault
systems. Another controlling parameter is stress, which is not
necessarily symmetric. We also develop an improved Cosserat
stress–strain inverse method for fault-slip data analysis based on
the Cosserat (or micropolar) strain inverse method of Twiss et al.
(1991, 1993), and Twiss and Unruh (1998, 2007). Our method is
implemented in the T-TECTO 2.0 computer program (available
free of charge from: www2.arnes.si/~jzaloh/t-tecto_homepage.
htm). The method was thoroughly tested on numerous artificial
and natural datasets. We present an analysis of one selected
natural fault system, which indicates that in some cases at least,
faulted rocks can be successfully described within the frame of
the Cosserat theory.

http://www2.arnes.si/%7Ejzaloh/t-tecto_homepage.htm
http://www2.arnes.si/%7Ejzaloh/t-tecto_homepage.htm
mailto:jure.zalohar@guest.arnes.si
www.sciencedirect.com/science/journal/01918141
http://www.elsevier.com/locate/jsg


Table 1
Explanation of the most important quantities used in the text.

Symbol Explanation First used in Eq.

f
!Cosserat Cosserat microrotation vector (1)
f
!macro Regional macrorotation vector (6)
f
!rel Relative microrotation vector (6)
u! Translation of material point (1)
l1
�!

; l2
�!

; l3
�!

Kinematic axes or eigenvectors
of the macrostrain tensor u(S)

(7)

l1, l2, l3 Principal strains or eigenvalues
of the macrostrain tensor u(S)

(7)

n! Normal vector to the fault plane (7)
m! Slip direction along the fault (7)
W Relative microrotation parameter (10)
L Distance between the centroids

of the neighboring blocks
(13)

U(s, m, R) pseudo-potential of dissipation (19)
f(s, m, R) Yield function (20) and (21)
_p Rate-of-plastic multiplier (20) and (24)
q Material internal variable accounting

for material hardening
(20)

R Thermodynamic force associated with
the material internal variables

(19)

J2d Second invariant of stress and/or
couple-stress tensors extended to
the Cosserat continuum

(22)

a1, a2, b1, b2 Material parameters (22)
pr, a and b Parameters in the constitutive equation

for the cataclastic flow
(28)

f1 Maximum possible angle of friction
for sliding on pre-existing fault

(39)

f2 Angle of residual friction (39)
F0 Object function in the inverse method (43)
s, D Parameters related to inhomogeneity

of the strain/stress field
(42)

sn and s Normal and shear stress along the fault (16)
e Cosserat strain tensor (1)
ep and ee Plastic and elastic parts of the Cosserat

strain tensor
(18)

e(S) and e(A) Symmetric and skew-symmetric parts
of the Cosserat strain tensor

(5) and (26)

k Torsion-curvature tensor (1)
s Stress tensor (15)
sd Deviatoric part of the stress tensor (22)
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2. Kinematics of the Cosserat continuum

The kinematics of the Cosserat continuum is characterized by
a (micro)rotational degree of freedom f

!Cosserat , which is indepen-
dent of the translatory motion described by the displacement field
u! (Fig. 1, Table 1). The field of continuum macro-rotations does not
coincide with microrotations at each material particle (Iordache
and Willam, 1998), and therefore we must consider two scales of
deformation: the instantaneous macrodisplacement gradient and
the instantaneous microrotation (e.g. Twiss and Unruh, 2007). The
former is defined by the relative motions of the centroids of the
blocks bounded by the faults, whereas the instantaneous micro-
rotation describes rigid rotation of blocks around their centroids
and is independent of the large-scale macrorotation f

!macro.
Therefore, in the Cosserat continuum the corresponding strain
measures are the Cosserat strain tensor e and the torsion-curvature
tensor k (Forest, 2000; Forest and Sievert, 2003):

e ¼ u�WC ¼ u!5 V
/
þ 3 f
!Cosserat ; k ¼ f

!Cosserat5 V
/
: (1)

Here, 3 represents the third-order permutation tensor
3 ¼ 3ijk ¼ 1=2ði� jÞðj� kÞðk� iÞ, and WC ¼ � 3 f

!Cosserat is the
Cosserat microrotation tensor, which describes the microrotation of
the blocks. We have also introduced the deformation gradient tensor
(or instantaneous macrodisplacement gradient) u ¼ uij ¼
vuj=vxi ¼ u!5 V

/
. The symmetric part uðSÞof this tensor defines the

macrostrain, while the skew-symmetric part u(A) defines the
instantaneous macrorotation. Here we use the sign convention from
the rock mechanics and paleostress analysis literature, where the
strains and stresses are assumed positive for contraction/compres-
sion and negative for extension/tension.

The torsion-curvature tensor k takes into account the differen-
tial changes of the microrotations in the neighborhood of a point.
From the definition of the Cosserat deformation measures (Eq. (1)),
it follows that the torsion-curvature tensor and the gradient of
Cosserat deformation are related by the equation (Toupin, 1962,
1964; Forest and Sievert, 2003):
Fig. 1. Micro- and macro-rotations in a Cosserat continuum. f
!regional represents the

large-scale regional rotation, which is not related to faulting and can be measured by
paleomagnetic measurements. f

!macro represents the large-scale regional rotation
related to faulting (¼axial vector of the deformation gradient tensor). f

!Cosserat is the
Cosserat microrotation of individual segments of the Cosserat continuum. Simplified
after Willam and Iordache (2001).

m Couple-stress tensor (15)
md Deviatoric part of the couple-stress tensor (22)
3 Third-order permutation tensor (1)
WC Cosserat microrotation tensor (5)
u Deformation gradient tensor (1)
u(S) Symmetric part of the deformation

gradient tensor (¼macrostrain tensor)
(3) and (5)

u(A) and Wmacro Skew-symmetric part of the deformation
gradient tensor (¼macrorotation tensor)

(5)

A Relative microrotation tensor (5)
N Second-order projection tensor (12)
T Third-order projection tensor (12)
1 Fourth-order identity tensor (12)
e 5 V
/
¼ u5 V

/
5 V

/
þ 3 $k: (2)

By means of the compatibility requirements, the gradient of the
mean rotation of the displacement field can be reduced to the
gradient of the symmetric part of the displacement gradient:

u!5 V
/

5 V
/
¼ uðSÞ5 V

/
� 3 $ 3 :

�
V
/

5uðSÞ
�
: (3)

As a result, the torsion-curvature tensor is uniquely determined
by the gradient of the Cosserat strain tensor (e.g. Toupin, 1962,
1964; Forest and Sievert, 2003):

k ¼ 1
2

3 :
�
e5 V

/
þ V

/
5
�
eþ eT��

¼ 1
2

3lij
�
eij;k þ

�
ejk þ ekj

�
i

�
: (4)



Fig. 2. Orientation of principal strain axes l
!

1; l
!

2; l
!

3 of the macrostrain tensor and
the macrorotation vector f

!macro for the case of a single fault (or fault set) with normal
vector n! and direction of slip m!.
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This is an important result, since in the description of geological
faulting we often take the deformation field to be homogeneous,
implying that the gradient of the Cosserat strain tensor is equal to
zero. In such a case the torsion-curvature tensor is also equal to zero.

Because the deformation gradient tensor can be decomposed
into the symmetric and skew-symmetric parts u¼ u(S)þ u(A), the
Cosserat strain tensor can be written as:

e ¼ uðSÞ þ uðAÞ �WC ¼ uðSÞ þ A (5)

with e(S)¼u(S) and e(A)¼A. We have introduced the relative
microrotation tensor

A ¼ uðAÞ �WC ¼Wmacro�WC ¼�3
�

f
!macro� f

!Cosserat�
¼�3 f

!rel: (6)

The macrorotation or skew-symmetric part of the displacement
gradient tensor is Wmacro ¼�3 f

!macro, with axial vector f
!macro. The

difference ðf
!macro� f

!CosseratÞ between the macrorotation and
microrotation vectors is here termed the relative microrotation.
Normally, the Cosserat microrotation vector f

!Cosserat and macro-
rotation vector f

!macro are axial vectors, which can have any orien-
tation. Following the simplified model of Twiss et al. (1991, 1993)
and Twiss and Unruh (1998, 2007), however, we presume that both
vectors are parallel to the intermediate eigenvector l

!
2 of the

macrostrain tensor u(S), because this is likely to be the most signif-
icant component. If l

!
1; l
!

2; l
!

3 are the eigenvectors of the macro-
strain tensor u(S), and l1, l2, l3 its eigenvalues with l1� l2� l3, the
deformation gradient tensor owing to slip along a single fault plane
with the normal n! and slip direction m! can be written in the
coordinate system of the eigenvectors l

!
1; l
!

2and l
!

3 as:

u!5 V
/
¼ g

2
4 1 0 1

0 0 0
�1 0 �1

3
5

¼

2
4 l1 0 0

0 0 0
0 0 l3

3
5þ

2
4 0 0

l1 � l3

2
0 0 0

�l1 � l3

2
0 0

3
5; (7)

where we also choose l1¼ g, l3¼�g, n! ¼ 1=
ffiffiffi
2
p

$ð l
!

1 þ l
!

3Þ,
m! ¼ 1=

ffiffiffi
2
p

$ð� l
!

1 þ l
!

3Þ, and where g is the relative amount of
contraction and extension in the direction of the l

!
1 and l

!
3 axes (see

Fig. 2). Then the skew-symmetric part or macrorotation tensor is:

½ u!5 V
/
�ðAÞ ¼ 1

2
3 ð u!� V

/
Þ ¼ �1

2
3 f
!macro ¼ �1

2
3
�
g l
!

2
�
; (8)

with axial macrorotation vector f
!macro parallel to the intermediate

eigenvector of the macrostrain tensor l
!

2. Because we also assume the
Cosserat microrotation vector f

!Cosserat to be parallel to l
!

2, it follows
that the relative microrotation vector f

!rel ¼ ðf
!macro � f

!CosseratÞ is
also parallel to l

!
2. The relative microrotation tensor A can then be

written in the coordinate system of the eigenvectors l
!

1; l
!

2and l
!

3 as:

A ¼

0
@ 0 0 �W1

2ðl1 � l3Þ
0 0 0

W1
2ðl1 � l3Þ 0 0

1
A

¼

0
@ 0 0 fCosserat � fmacro

0 0 0
fmacro � fCosserat 0 0

1
A: (9)

Here, we introduce the relative microrotation (or vorticity)
parameter W (e.g. Twiss and Unruh, 1998, 2007):
W ¼ fmacro � fCosserat

0;5ðl1 � l3Þ
: (10)

This parameter represents an extra degree of kinematic freedom
that describes a normalized measure of the difference between the
Cosserat microrotation of the rigid blocks f

!Cosserat and the average
macrorotation f

!macro of the global material lines in the global
deformation of the rock continuum (Twiss and Unruh, 1998). The
denominator in Eq. (10) is the maximum possible shear strain
obtainable from the global macrostrain tensor.
3. The slip direction along the faults

The strain and curvature vectors on each microplane (fault) are
given by:

te
! ¼ e n! and tk

! ¼ k n!: (11)

We are particularly interested in the simple case of a homoge-
neous deformation field, where the gradient of the Cosserat strain
tensor and the torsion-curvature tensor k are both equal to zero,
because this will be generally assumed in the fault-slip data anal-
ysis for the sake of simplicity. First, the second- and third-order
projection tensors N and T are defined with the fourth-order
identity tensor ½1 �ijkl ¼ dikdjl and the normal vector to the micro-
plane (fault) n! as (e.g. Etse and Nieto, 2004):

N ¼ n!5 n!;
T ¼ n!$ 1 � n!5 n!5 n!: (12)

In the case of k¼ 0 the direction of slip along the fault is parallel
to the resolved shear direction, which is the tangential component
of the strain vector:

gi mi
�! ¼ L T : e: (13)

Here, m!i represents the unit vector in the direction of slip along
the fault, gi is the amount of slip, and L is the distance between the
centroids of the two neighboring blocks. Because the Cosserat
strain tensor depends on the macrodeformation and the relative
microrotation tensors, the slip along the fault can be decomposed
into two components:

gi mi
�! ¼ gs

i si
!þ gc

i ci
!
: (14)



J. Žalohar, M. Vrabec / Journal of Structural Geology 32 (2010) 15–2718
where gs
i s! ¼ L T : uðSÞ represents the contribution of the macro-

deformation field to the slip direction along the fault, while gc
i c! ¼

L T : A represents the contribution of the relative microrotations.

4. The stress measures

The classical continuum theory is based on the assumption that
the transfer of load between two neighboring material points
occurs only through a force vector, leading to the definition of
symmetric stress and strain tensors (Onck, 2002). In the Cosserat
theory it is, however, assumed that the transfer of the interaction
between two particles of the body through a surface element n!dS
occurs not only by means of a traction vector s!dS, but also by
means of a moment vector m!dS (e.g. Forest, 2000). Surface forces
and couples are then represented by the generally non-symmetric
tensors, the force stress tensor s¼ sij and the couple-stress tensor
m¼ mij:

s! ¼ s n! and m! ¼ m n!: (15)

The force stress vector and the couple-stress vector can be
decomposed into normal and tangential components:

sn
�! ¼ N : s; s! ¼ T : s; mn

�! ¼ N : m; mt
! ¼ T : m: (16)

Thus, s!n and m!n represent the normal projected stress and the
normal projected couple-stress, whereas s! and m!t represent the
shear stress vector and the tangential projected couple-stress
vector, respectively.

The force and couple-stress tensors s and m must fulfill the
equations of balance of momentum and of balance of moment of
momentum:

s$ V
/ þ f

!
¼ r €u!; m$ V

/
� 3 : sþ c! ¼ I

€
f
!
; (17)

where volume forces f
!

, volume couples c!, mass density r, and
isotropic rotational inertia I have been introduced (Forest, 2000).

5. Constitutive equations

The required characteristics of constitutive equations for fault-
ing-related deformation of the Earth’s crust (cataclastic flow) were
discussed by Twiss and Unruh (1998), who recognized three prin-
cipal driving mechanisms that should be incorporated: (1) the
elastic properties of the blocks bounded by the faults; (2) frictional
sliding on shear surfaces (fault planes); and (3) plastic deformation
and brittle fracture of rocks. They did not, however, provide an
exact mathematical treatment of the problem. Here, we present the
constitutive model based on the J-2 plasticity theory.

Assuming strain is small, the total deformation and curvature
tensors can be decomposed into elastic and plastic parts (e.g.
Willam, 2002; Forest and Sievert, 2003):

e ¼ ee þ ep; k ¼ ke þ kp: (18)

In the description of the cataclastic flow, we assume that ee� ep

and ke� kp, so ezep and kzkp. As discussed by Forest and Sievert
(2003), the classical theory of so-called standard materials
proposed by Germain et al. (1983), Lemaitre and Chaboche (1994),
and Forest et al. (2001) can be extended to Cosserat media by
presentation of a viscoplastic potential U(s, m, R), the so-called
pseudo-potential of dissipation, such that:

_ep ¼
vU

vs
; _kp ¼

vU

vm
; _q ¼ vU

vR
: (19)
The thermodynamic force associated with the material internal
variable q was denoted by R (see Forest and Sievert, 2003, for
a more detailed definition). To ensure the positivity of the intrinsic
dissipation, the potential U(s, m, R) should be a convex function of
its variables. The potential is a coupled function of force and couple
stresses, U(s, m, R), and can be used to describe rate-independent
material behavior. It involves a single yield function f(s, m, R) and
a single plastic multiplier _p:

_ep ¼ _p
vf
vs
; _kp ¼ _p

vf
vm
; _q ¼ � _p

vf
vR
: (20)

The yielding occurs when (plastic yield condition) f(s, m,
R)� 0 (Willam, 2002). To derive the constitutive equations for
the cataclastic flow, we are interested in the exact formulation
of the yield function. In the literature, numerous yield functions
have been proposed, which are mainly modifications and
extensions of the Mohr–Coulomb, von Mises and Drucker–Prager
yield functions (e.g. de Borst, 1991, 1993; Mohan et al., 1999;
Hansen et al., 2001; Manzari, 2004; Salari et al., 2004). The
onset of yielding of the Cosserat medium can be successfully
accounted for using the extended von Mises or Drucker–Prager
yield functions (J-2 plasticity), as discussed, for example, by
Sawczuk (1967), Lippmann (1969), Besdo (1974, 1985), Mühlhaus
and Vardoulakis (1987), de Borst (1991, 1993), and Forest and
Sievert (2003):

f ðs;m;RÞ ¼ J2dðs;mÞ � RðpÞ ¼ 0 (21)

with:

J2dðs;mÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1sd : sdþa2sd : sdTþb1md : mdþb2md : mdT

q
: (22)

J2d represents the generalized second invariant of deviatoric
stress and couple-stress tensors extended to the Cosserat
continuum (de Borst, 1993). sd is the deviatoric part of the stress
tensor, sdT is the transposed deviatoric part of the stress tensor,
md is the deviatoric part of the couple-stress tensor, mdT is the
transposed deviatoric part of the couple-stress tensor, and a1, a2, b1

and b2 are the material parameters. Note that the stress tensor
s can be decomposed into the spherical and deviatoric parts
s¼sBþsd with sB ¼ CsD¼ ð1=3ÞTrðsÞ1 and sd¼s�sB. The
trace of the stress tensor Tr(s) is also known as the first invariant J1
of the stress. From Eq. (20) we have:

_ep ¼ _p
vf
vs
¼ _p

a1sd þ a2sdT

J2d
�
sd
� : (23)

This, of course, is not the most general case, since the couple-
stress tensor was neglected. The use of a consistency condition _f ¼ 0
for plastic loading leads to the expression for the plastic multiplier _p,
which in this case linearly depends on the rate-of-strain _ep (e.g.
Iordache and Willam, 1998; Forest and Sievert, 2003):

_p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1

a2
1 � a2

2

_ep : _ep þ
a2

a2
2 � a2

1

_ep : _eT
p

s
: (24)

Eq. (23) can be rewritten into the following form:

_ep ¼
_p

J2d
�
sd
�ða1 þ a2ÞsðS;dÞ þ

_p

J2d
�
sd
�ða1 � a2ÞsðA;dÞ (25)

where s(S,d) is the symmetric part of the stress deviator and s(A,d) is
the skew-symmetric part of the stress deviator. From this equation
it also follows that the following relations hold for the symmetric



Fig. 3. The Mohr circle of non-symmetric state of plane stress. Simplified after Willam
and Iordache (2001). See text for details.
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and skew-symmetric parts of the deviatoric part of the Cosserat
strain tensor:

_eðSÞp ¼
_p

J2d
�
sd
�ða1 þ a2ÞsðS;dÞ;

_eðAÞp ¼
_p

J2d
�
sd
�ða1 � a2ÞsðA;dÞ:

(26)

Putting this into Eq. (25), we obtain:

_s
d ¼ _s

ðS;dÞ þ _s
ðA;dÞ ¼

J2d
�
sd
�

_pða1 þ a2Þ
_eðSÞp þ

J2d
�
sd
�

_pða1 � a2Þ
_eðAÞp ; (27)

Note that J2d(sd)¼ R(p) (Eq. (21)). Now the constitutive equation
can be derived. By adding the hydrostatic pressure term pr1 we see
the full stress tensor is:

s ¼ pr1þ a _eðSÞp þ b _eðAÞp ; (28)

with a ¼ RðpÞ= _pða1 þ a2Þ and b ¼ RðpÞ= _pða1 � a2Þ as the constitu-
tive parameters. It is important that the same constitutive relation as
Eq. (28) can also be derived for other yield functions within the J-2
plasticity model, for example, for the Drucker–Prager yield function
(see, for example, de Borst,1993; Hansen et al., 2001, for the definition)
and for the Pitman–Schaeffer–Gray–Stiles yield function (Dartevelle,
2003). In this case, the choice of the yield function only affects the
definitions of the constitutive parameters a, b and pr1, whilst the
general shape of the constitutive equation remains the same.

Although the constitutive relation (Eq. (28)) is formulated in
terms of rates-of-deformation, in practice we interpret these rates to
be represented by small increments of deformation that accumulate
over a finite, but geologically very short time intervals (e.g. Twiss and
Unruh, 2007). On the assumption that the rate-of-deformation is
approximately constant during the deformation phase, the time can
be eliminated from the constitutive equation by multiplying it by Dt,
which does not affect the result. Thus, the rates are represented by
instantaneous deformation, and the time interval, over which these
increments accumulate, is not a factor in the analysis. In the fault-slip
data analysis, the Cosserat strain tensor and the corresponding stress
tensor of the form e¼ konst$e(orig.) and s¼ konst$s(orig.) are generally
calculated, where e(orig.) and s(orig.) are the actual Cosserat strain and
corresponding stress tensors at the time of faulting and e and s are
our solutions, while konst. is some undetermined constant. There-
fore, the final form of the constitutive equation used in the T-TECTO
computer program is:

s ¼ pr1þ auðSÞ þ bA (29)

or also

s ¼ ð1� bÞT$1þ ð1� bÞuðSÞ þ bA: (30)

Note that u(S)¼ ep
(S) and A¼ ep

(A). Because the tensors of the form
s¼ konst$s(orig.) and e¼ konst$e(orig.) are only determined in the
fault-slip data analysis, we may choose aþ b¼ 1. In addition, the first
parameter pr on the right side of Eq. (29) is defined as (1� b)T, with T
being some parameter. In this way, the stress tensor s is directly
proportional to the Cosserat strain tensor e, when we choose b¼ 0.5:

s ¼ ð1� bÞ
�

T1þ uðSÞ þ b
1� b

A
�
¼ 1

2

h
T1þ uðSÞ þ A

i
¼ 1

2
½T1þ e�: (31)

6. Mohr representation of stress

In a classical continuum, the stress is conveniently represented
by the Mohr circles diagram in the Mohr stress space of normal
stresses versus shear stresses. The generalization of the Mohr
circles diagram to the Cosserat continuum was discussed in detail
for the two-dimensional case by, for example, Iordache and Willam
(1998), Willam and Iordache (2001) and Figueiredo et al. (2004), so
the concept of Mohr diagrams for the Cosserat continuum will be
presented here only briefly. The geometrical representation of non-
symmetric stress (Fig. 3) results in the generalization of the tradi-
tional Mohr circle construction in the following way (Iordache and
Willam, 1998; Willam and Iordache, 2001):

ðsn � scÞ2þðs� scÞ2¼ r2; (32)

with

sc ¼
s11 þ s22

2
; sc ¼

s12 þ s21

2
and

r2 ¼
�

s11 � s22

2

	2

þ
�

s12 þ s21

2

	2

: (33)

Here, sij are the components of the stress tensor in the two-
dimensional case, sn is the normal stress, s is the shear stress, and
sc and sc represent the position of the center of the Mohr circle with
radius r (Fig. 3). The center of the Mohr circle is no longer located on
the sn coordinate axis. The shift of the center is a measure of the
loss of symmetry (Willam and Iordache, 2001). The eigenvalues

s1;2 ¼ sc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
ðs11 � s22Þ2þs12s21

r
(34)

are the principal stresses with zero shear stress. They remain real-
valued only as long as the discriminant is positive. When the
eigenvalues turn complex conjugate, then the Mohr circle no longer
intersects the sn coordinate axis, and thus has no real-valued prin-
cipal stresses. It is also important to note from the Mohr diagram
(Fig. 3) that the shear stress on planes with maximal normal stress is
not zero in such cases.

The construction of the Mohr diagram for the three-dimensional
case is more complex. We are not aware of any general theory for
analytical construction of Mohr diagrams for three-dimensional
asymmetric matrices. Therefore, in the T-TECTO computer program
the three-dimensional Mohr diagrams for the Cosserat continuum
are constructed numerically by plotting the area of possible values
of normal and shear stress in gray color. Fig. 4 shows Mohr
diagrams for three different values of the relative microrotation
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parameter W and constitutive parameters a and b. For small values
of the parameters W and b the Mohr diagram looks similar to the
classical case (Fig. 4b). In this case, three eigenvalues exist which
define the orientation of planes with zero shear stress. For larger
values of the parameters W and b, however, Mohr diagrams become
more complex and do not necessarily define three zero shear stress
planes, but only two or even a single one (Fig. 4c). In this last case,
two eigenvalues of the stress tensor are complex conjugate, and the
third is real.
7. Fault reactivation in the Cosserat continuum

Finally, we can derive equations for fault reactivation in the
Cosserat continuum. In the classical continuum the condition for
reactivation would be given by Amontons’s Law (e.g. Jaeger and
Cook, 1969; Reches, 1978, 1983; Angelier, 1989; Ranalli and Yin,
1990; Reches et al., 1992; Yin and Ranalli, 1992, 1995; Udias, 1999;
Ranalli, 2000; Fry, 2001):

s � msn ¼ sn$tanf2; (35)

where sn ¼ kN: sk is the normal stress acting on the fault,
s! ¼ T : s is the resolved shear stress, and m and f2 are the coefficient

and angle of residual friction for sliding on the pre-existing fault,
respectively. Amontons’s Law states that the fault is (re)activated
when the resolved shear stress exceeds the frictional shear strength
of the fault. In a similar way, the formation of new faults is explained,
for example, by the Coulomb–Mohr criterion s¼ S0þ sn$tan fi,
where S0 is the cohesion, and fi is the angle of internal friction. New
faults are formed when the largest Mohr circle on the Mohr diagram
touches the line s¼ S0þ sn$tan fi (e.g. Jaeger and Cook,1969; see also
Fig. 4).

In the Cosserat continuum, the above condition (Eq. (35)) is not
enough for a fault to be (re)activated. The direction of slip along the
fault is given by equation gi m

!
i ¼ L T : e (Eq. (13)) and depends on the

Cosserat strain tensor (supposing that the torsion-curvature tensor
can be neglected). Because of the nonlinear constitutive relationship
between the stress and strain, the shear stress s! ¼ T : s is generally
non-parallel to the direction of movement. In addition, the traction of
the two neighboring blocks is also related to a couple-stress, with
a normal component m!n ¼ N: m and a tangential component
Fig. 4. Mohr circles for non-symmetric states of stress (three-dimensional case) for various
tensor. Activation of faults in symmetric and non-symmetric states of stress is possible, when
in the direction of movement along a fault) lies above the line s¼ sn$tan f2 representing Am
criterion (Jaeger and Cook, 1969). S0 is the cohesion and fi is the angle of internal friction. Th
part of the stress tensor). f is the angle of friction for the individual fault. See text for deta
m!t ¼ T : m. Generalization of the Amontons’s condition, Eq. (35), to
the Cosserat continuum would be:

�
s!þ 1

Lc
mt
!
	

$m!� m

�
sn þ

1
Lc

mn

	
or

�
T : sþ 1

Lc
T : m

	
$m!� m

�
kN : sk þ 1

Lc
kN : mk

	
: (36)

Here Lc represents characteristic length for the torsion-curva-
ture in the Cosserat medium. In some cases, we expect that Lc could
be of the same order of magnitude as the distance between the
centroids of the two neighboring blocks L. In the case of homoge-
neous deformation of the Cosserat medium, the torsion-curvature
tensor k remains small, because it depends on the gradient of the
Cosserat strain tensor e (Eq. (4)). This also means that the couple
stresses can be neglected and the Amontons’s condition for fault
reactivation depends only on the stress tensor s:�
T : s

�
$m!� mkN : sk or sr ¼ s!$m!� msn: (37)

A fault can be activated when the Mohr point on the Mohr
diagram, illustrating the values of normal stress and shear stress
component in the direction of movement sr, lies above the straight
line s� msn, which represents Amontons’s Law of Friction (Fig. 4). It
is important to note that based on the proposed constitutive
equation (Eqs. (28) or (29)) the skew-symmetric component of
stress tensor affects only the magnitude of shear stress. Since
A n! ¼ eðAÞ n! ¼ f

!rel � n!, we have:

s n!¼ pr n!þaeðSÞ n!þbeðAÞ n!¼ pr n!þaeðSÞ n!þb f
!rel� n!: (38)

The vector A n!¼ eðAÞ n!¼ f
!rel� n! is perpendicular to the

normal vector n! and, consequently, the contribution of the skew-
symmetric component of the stress tensor lies in the fault plane.
The shear stresses in the asymmetric stress regimes will therefore
be higher than in symmetric stress regimes.

In Fig. 5 we illustrate how the possible orientations of slip-
capable faults are influenced by varying boundary conditions
defined by the Cosserat strain tensor and the corresponding stress
tensor. Faults were generated with the AmontonsWin computer
values of constitutive parameters a and b. (c) represents the most asymmetric stress
ever the Mohr point (illustrating the value of normal stress and shear stress component

ontons’s Law of Friction. The line s¼ S0þ sn$tan fi represents Coulomb–Mohr failure
e line s¼ sn$tan f1 represents the tangent to the largest Mohr circle (for the symmetric
ils.
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program, which is part of the T-TECTO 2.0 suite. AmontonsWin
generates a prescribed number of faults, which are either randomly
orientated or follow a pre-defined distribution of orientations. The
direction of slip along the faults is then set parallel to the resolved
shear direction on the fault planes, calculated from the input Cos-
serat strain tensor according to the equation gi m

!
i ¼ L T : e

(Eq. (13)). The faults can only be activated when the resolved remote
shear stress in the direction of slip exceeds the frictional resistance
for sliding according to Amontons’s Law. Even from the randomly
generated population of faults, only the faults with mechanically
suitable orientation are accepted by the AmontonsWin program,
thus providing insights into possible geometries of slip-capable fault
systems under various stress–strain boundary conditions. The
boundary conditions in the experiments shown in Fig. 5 were
controlled by varying the parameters a, b, W and f2. The following
can be deduced:

1. The experiment in Fig. 5a demonstrates a classical case with no
relative microrotations. The relative microrotation parameter
was set to W¼ 0 and, consequently, the relative microrotation
tensor A also equals zero. The possible slip-capable fault system
is symmetrical with respect to the principal strain axes of the
macrostrain tensor, producing conjugate or orthorhombic
geometry. Such fault systems accommodate a non-rotational
bulk deformation.

2. In the experiment in Fig. 5b, relative microrotations were
introduced, with W¼ 1, a¼ 0.5, b¼ 0.5, pr¼ 0.22, and f2¼ 30	.
In this case the stress tensor is directly proportional to the
Cosserat strain tensor (Eq. (31)) and consequently the direction
of shear calculated from the Cosserat strain tensor is parallel to
Fig. 5. Forward modeling of possible fault orientations: (a) in a classical continuum; and (b
microrotation, but becomes asymmetrical (with respect to the principal strain axes of the ma
microrotations on the direction of slip along the faults. (d) Shows that in the Cosserat contin
macrostrain tensor can be activated without the requirement for low residual friction. (e) Theo
field characterized by intensive relative microrotation. (e) Also shows one illustrative natura
lon¼ 14	1205100) in Slovenia, with a geometry remarkably similar to that predicted by the th
the shear stress calculated from the stress tensor. The slip-
capable fault system in such boundary conditions is clearly
non-symmetrical with respect to the principal strain axes of
the macrostrain tensor. This example shows that the relative
microrotation not only affects the direction of slip along the
faults, but also affects the geometry of the activated fault
system which accommodates the applied strain and stress
boundary conditions.

3. The experiment in Fig. 5c illustrates the effect of relative
microrotations on the direction of slip along the faults. We
generated a north-dipping and a south-dipping fault set. The
parameter values were set to a¼ 0.5, b¼ 0.5, pr¼ 0.22, and the
angle of residual friction was set to f2¼ 30	. In the classical
case with no relative microrotation (W¼ 0), all faults exhibit
reverse slip. When, however, relative microrotations are
present, the slip on the faults becomes reverse-oblique.

4. The experiment in Fig. 5d shows that in the case of large
relative microrotations (W¼�1) coupled with asymmetric
stress states (a¼ 0.5, b¼ 0.5, pr¼ 0.13) both very steeply and
very gently dipping reverse and normal faults can be activated,
even when the angle of residual friction is set to the ‘‘normal’’
value f2¼ 30	. In this case the faults are almost perpendicular
to one of the principal strain axes of the macrostrain tensor. In
a classical continuum model, slip activation on such faults
would only be possible if friction was very low.

5. Fig. 5e shows two theoretical fault systems generated in the
symmetric and asymmetric stress state and in the strain
boundary conditions characterized by intensive relative
microrotation. The fault system geometry formed in an asym-
metric stress state differs significantly from that formed in
) in a Cosserat continuum. The fault system is symmetrical for the case of zero relative
crostrain tensor) with increasing relative microrotation. (c) Shows the effect of relative
uum the faults in unsuitable orientation with respect to the principal strain axes of the
retical fault system geometry in symmetric and asymmetric stress states and in the strain
l example observed in the Upper Triassic limestone in the Peci quarry (lat¼ 46	1704600 ,
eory for symmetric stress. See text for details.
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a symmetric stress. In the case of symmetric stress, all the faults
are inclined at approximately the same angle with respect to
the horizontal plane, while the slip direction along the faults
tends to be sub-parallel to the common intersection between
the fault planes. Our field observations show that natural fault
systems often exhibit such geometry. Fig. 5e shows such
a natural fault system, observed in the Upper Triassic limestone
in the Peci quarry, Slovenia. Its geometry is remarkably similar
to that predicted by the Cosserat theory for symmetric stress.
8. Cosserat stress–strain inverse modeling

One of the main goals of fault-slip data analysis is to find the
stress and/or strain tensor, capable of explaining the direction of slip
on most of the faults observed in the studied rock mass. Generally,
this problem is referred to by structural geologists as the inverse
problem (Fleischman and Nemcok, 1991; Angelier, 1994; Twiss and
Unruh, 1998). We extended the Gauss paleostress inverse method
(Žalohar and Vrabec, 2007) to the Cosserat continuum. The Gauss
paleostress method defines the compatibility measure and compat-
ibility function, which verify the compatibility of a given stress
tensor with observed fault-slip data. In the classical paleostress
analysis, it is assumed that the direction of slip along the fault is
parallel to the resolved remote shear stress acting along that fault.
The compatibility of a chosen fault is therefore related to the angular
misfit ai between the actual direction of slip and the theoretical
direction of shear stress. In the Cosserat stress–strain analysis of
fault-slip data, the direction of slip along the faults no longer reflects
the direction of shear stress, but is parallel to the shear associated
with the large-scale deformation boundary conditions defined by
the Cosserat strain tensor. It is assumed that the direction of slip is
defined by Eq. (13): gi m

!
i ¼ L T : e. The compatibility of a given fault

therefore depends on the Cosserat strain tensor and not on the
stress tensor. At the same time, however, it is assumed that the fault
can only be active when the resolved remote shear stress in the
direction of slip sr ¼ ðT: sÞ$m! exceeds the frictional resistance for
sliding mkN: sk (see Eq. (37)). Thus, fault-slip data contain infor-
mation on both the Cosserat strain tensor and stress tensor, which
have to be extracted in the inverse modeling.

The optimal solution for the Cosserat strain tensor and the
corresponding stress tensor associated with the observed faults can
be found by searching for the global and highest local maxima of
the object function F0 defined as a sum of compatibility functions for
all fault-slip data. First, we define the compatibility measure, which
considers both the angular misfit ai between the predicted and
actual direction of slip on the fault, and the position of the ‘‘Mohr
point’’ on the Mohr diagram:

d2
i ¼ a2

i þ
�

w2;ijf� f2j
2D
f2

	2

þ
�

w1;ijf� f1j
2D
f1

	2

; (39)

where parameters w1,i in w2,i are as follows:

w2;i ¼ 1; when f < f2;
w2;i ¼ 0; when f � f2

(40)

and

w1;i ¼ 1; when f > f1;
w1;i ¼ 0; when f � f1:

(41)

The angle of friction f for an individual fault is measured
between the sn axis on the Mohr diagram and the line which
connects the ‘‘Mohr point’’ and the origin of the Mohr diagram
(Fig. 4). The parameters f1 and f2 constrain the possible values of
the ratio between the normal and shear stress on the faults. The
parameter f2 represents the angle of residual friction for sliding on
a pre-existing fault, f2¼ arctan(m), and the parameter f1 roughly
approximates the angle of internal friction fi for the intact rock.
Since the angle of internal friction fi generally has a higher value
than the angle of residual friction f2, the value of the parameter f1

should also be slightly higher than f2. When the angle of friction f

for the individual fault is outside the range of values between f1

and f2, the value of the compatibility measure is increased. In this
way the above compatibility measure favors mechanically accept-
able solutions to the inverse problem. It is also convenient to use
such a definition of the compatibility measure, because in the case
of mechanically less compatible faults (small shear stress and high
normal stress) small changes in orientation of the fault plane can
often result in large changes in orientation of slip direction. The
above compatibility measure prevents such faults from influencing
the final results of the fault-slip data analysis.

The parameter D represents a threshold value for the compati-
bility measure di. Only the strain and stress tensors that explain the
direction of slip on a given fault and position of its ‘‘Mohr point’’ on
the Mohr diagram with the compatibility measure di lower than the
selected threshold D are considered to be compatible with the
observed fault-slip datum.

In the Gauss method, we also define the Gaussian compatibility
function:

  !  !!

wi¼

1

2

� exp � d2
i
2 �exp � D2

2 ;

1�exp �D =2s2 2s 2s

when di<D;
wi¼0; when di�D: (42)
Here, parameter s represents the value of the second moment
(dispersion parameter) of the distribution of angular misfit between
the predicted and actual direction of slip along the faults. Only the
faults that are eventually compatible with the chosen Cosserat strain
and stress tensors contribute to the value of the object function F0,
because for such faults the value of the compatibility measure di is
small and the value of compatibility function wi is high. For
mechanically and kinematically less compatible faults, the value of
the compatibility measure di increases and, consequently, the value
of compatibility function wi decreases. Ideally, for all the outliers, the
value of the compatibility function should be zero, since it is
supposed that the outliers either belong to different deformation
phases in the deformation history of the region, or represent faults
influenced by local strain and stress fields. The mathematical aspects
of Eq. (42) and the effectiveness of the Gauss inversion method were
discussed in detail by Žalohar and Vrabec (2007).

The optimal solution for the Cosserat strain tensor and its
associated stress tensor can be found by searching for the global
and local maxima of the object function;

F0 ¼
XN

i¼1

wi ¼ max: (43)

Because the direction of slip along the fault is calculated from the
Cosserat strain tensor e, and the state of stress along the fault is
calculated from the stress tensor s, which is related to the Cosserat
strain tensor through the constitutive equation (Eq. (29)), the object
function depends only on the Cosserat strain tensor,
F0¼ F0(e, s(e))¼ F0(e). The described procedure finds the Cosserat
strain tensor of the form e¼ konst$e(orig.), where e(orig.) is the actual
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Cosserat strain tensor at the time of faulting, e is our solution, and
konst. is some undetermined constant. The stress tensor is calculated
from the Cosserat strain tensor with the constitutive equation
s¼ pr1þ au(S)þ bA. Note that the obtained stress tensor is also of the
form s¼ konst$s(orig.). A careful inspection of the derived Cosserat
stress–strain inverse method shows that the reconstruction of the
Cosserat strain tensor and its associated stress tensor depends on the
parameters s, D, a, b, pr, f1, and f2, which should be set by the user prior
to the analysis. The values of the parameters should be chosen as
follows:

1. The values of parameters s and D depend on the inhomogeneity
of the strain/stress field at the time of faulting. When the strain/
stress field at the time of faulting is highly inhomogeneous, the
values of s and D should be large, for example, s� 30	 and
D� 60	. If the strain/stress field is less inhomogeneous, lower
values could be used, for example, s� 15	 and D� 30	. The
inversion procedure should be repeated many times with
different values of the parameters s and D in order to find the
best strain/stress tensor solutions. The optimal solutions are
identified when the calculated standard deviation of angular
misfit s0 and maximum angular misfit amax predicted by the
given strain/stress tensor solutions are smaller or approxi-
mately equal to the values of s and D used in the inversion.

2. The values of the parameters a and b are always between zero and
one. For the symmetric stress tensor, the parameter b is equal to
zero, and the parameter a is equal to one. For the completely skew-
symmetric stress tensor the opposite holds: a¼ 0 and b¼ 1. If we
want the stress tensor to be a linear function of the Cosserat strain
tensor, we choose b¼ 0.5. The parameter pr in the constitutive
equation is calculated automatically by the T-TECTO with resolu-
tion 0.01 to insure the optimal position of the Mohr points on the
Mohr diagram: they should lie between the straight lines
s¼ sntan f1 and s¼ sntan f2 (see Fig. 4).

3. The optimal values of the parameters f1 and f2 for different
rocks and granular materials are documented in literature (e.g.
Jaeger and Cook, 1969; Schellart, 2000). The parameter f2

constrains the lowest possible value for the angle of friction on
the pre-existing fault and the parameter f1 represents the
highest possible value for the angle of friction on the pre-
existing fault. Since the angle of internal friction fi generally has
a higher value than the angle of residual friction f2, the value of
the parameter f1 should be slightly higher than f2. Usually, the
best values for these parameters are: f1z60+ and f2z30+.

After the values of the parameters s, D, a, b, pr, f1, and f2 are
properly chosen, the object function F0 is maximized by use of the
grid-search method. All possible trial Cosserat strain and corre-
sponding stress tensors are calculated in the following way. First,
the dip angle of the principal kinematic axis l

!
1 is defined, ranging

from 2	 to 89	 with resolution of 5	. For each dip angle, the dip
direction is calculated, increasing from 2.5	 to 360	 at regular
intervals of (90	/(90	 � dip))$5	. Second, the l

!
2 and l

!
3 axes are

rotated in the plane perpendicular to each l
!

1 axis in the clockwise
sense for 180	 at regular intervals of 5	. The best values of principal
strains l1, l2 and l3 are found by defining the parameter
D¼ (l2� l1)/(l3� l1), which describes the shape of the strain
ellipsoid (e.g. Twiss and Unruh, 1998). Because we choose
l1� l2� l3, the parameter D can range from zero to one. The
resolution of the parameter D in the current version of the program
T-TECTO is 0.1. We also take Tr(u(S))¼ l1þ l2þ l3¼ 0 (no volume
changes). In the last step, the relative microrotation parameter W is
increased from �1 to 1 with resolution of 0.1. In this way, we first
calculate the trial Cosserat strain tensor, while the corresponding
stress tensor is calculated from the constitutive equation (Eq. (29)).
In summary, the Cosserat stress–strain inverse method allows
us to find the Cosserat strain tensor and associated stress tensor.
The stress tensor is used only as a tool for analyzing fault reac-
tivation, while the Cosserat strain tensor defines the orientation of
the principal strain axes l

!
1, l
!

2 and l
!

3 (kinematic axes) and the
direction and sense of the relative microrotation axis described by
f
!rel and W. The kinematic axes represent the directions of the
largest shortening and extension in the region. It is worth noting
that the relative microrotation axis f

!rel does not also define the
sense of the actual microrotation of blocks between the faults,
because the relative microrotation is the difference between the
macrorotation and microrotation f

!rel ¼ f
!macro � f

!Cosserat .

9. Case study: analysis of fault system at the Sinji vrh
experimental site

9.1. Geological setting

In our selected case study we present the analysis of a fault
system observed in Jurassic limestone in an underground tunnel at
the Sinji vrh experimental site, SW Slovenia (lat¼ 45	5402700,
lon¼ 13	5503700). The site is located in the Cenozoic External
Dinarides fold-and-thrust belt (Fig. 6a). The experimental tunnel
runs across the regional-scale NW–SE oriented, dextral strike-slip
Avče Fault (Veselič et al., 1998). The measured section is 150 m long
and is situated in the outer fractured zone of the Avče Fault,
immediately adjacent to the 40 m wide cataclastically crushed core
zone. The analyzed fault network is a highly asymmetric system of
90 small-scale faults (Fig. 6b), with well-developed slickensides
exhibiting good sense-of-shear criteria on fault planes. The pre-
vailing orientation of observed faults is NNW–SSE, almost
perpendicular to the main Avče Fault.

Map-scale observations and regional paleostress analysis
suggest that the prominent NW–SE oriented faults of SW Slovenia
originated as dip-slip normal faults in NE–SW-directed extension,
subsequent to the SW-directed thrusting of the Dinarides in the
Eocene-Oligocene times (Vrabec and Fodor, 2006). The NW–SE
oriented faults consistently cut and displace Dinaric thrust struc-
tures and are therefore clearly younger than thrusting.

A later weak oblique-sinistral reactivation during approximately
E–W directed shortening is observable at some localities (Gregorič,
2005). Finally, in the post-Miocene strain field characterized by N–S
contraction and E–W extension, the kinematics of the NW–SE
trending faults was changed to dextral strike-slip (Vrabec and
Fodor, 2006).

9.2. Stress–strain inversion of the fault-slip data

Inversion was performed by trying a range of values for the
parameters s, D, a, b, f1, and f2. All results consistently indicate
approximately N-S oriented maximum contraction and E–W
oriented extension, consistent with the latest, post-Miocene regional
kinematic phase (Vrabec and Fodor, 2006). The inversion results also
consistently indicate intensive relative microrotations around a sub-
vertical rotation axis, with the relative microrotation parameter W
equal to one. Fig. 7 shows two inversion results for two different
values of the constitutive parameter b. The employed values of other
inversion parameters were s¼ 50	, D¼ 70	, f1¼80	, and f2¼ 30	. In
both cases, the standard deviation s0 of misfit between the predicted
and actual direction of slip along the faults remains under 20	, which
indicates a good kinematic compatibility between the data and the
determined Cosserat strain tensor. We varied the value of parameter
b ranging from zero to one (with resolution of 0.1 and with a¼ 1� b)
to test the mechanical compatibility of the observed fault system
with symmetric and asymmetric stress tensors. Fig. 8a shows the



Fig. 6. Structural setting of the fault system at the Sinji vrh experimental site. (a) Geological map of the region (simplified after Jane�z et al., 1997). (b) The fault system observed at
the Sinji vrh experimental site and hypothetical slip directions along the faults after elimination of the effect of the relative microrotation. (c) A simplified structural interpretation of
the deformation style. See text for details.

J. Žalohar, M. Vrabec / Journal of Structural Geology 32 (2010) 15–2724
dependence of the number of mechanically and kinematically
compatible faults N on the constitutive parameter b. When the
symmetric stress tensor is used (b¼ 0), the shear stress component
in the direction of movement exceeds proposed frictional resistance
for sliding on only 53% of the measured faults, with the remaining
fault-slip data being mechanically incompatible with the calculated
stress tensor (Figs. 7a and 8a). With higher values of the parameter b,
the stress tensor becomes increasingly asymmetrical and the number
of mechanically compatible faults rises considerably (Figs. 7b and 8a;
see also Eq. (38)). The number of compatible faults reaches its
maximum at b¼ 0.74. For b¼ 0.7, there are 81% of faults compatible
with the calculated Cosserat strain tensor and the corresponding
stress tensor (Fig. 7b). For larger values of b the number of compatible
faults drops. For b¼ 1 (completely skew-symmetric stress tensor) no
reliable solution was found. Fig. 8b shows another criterion to verify
the reliability of the inversion results and the value of parameter b.
The best inversion solutions are characterized by a high number of
compatible faults N and low values of standard deviation of misfit
between predicted and actual direction of slip s0. Therefore, in Fig. 8b
we analyzed the dependence of the ratio N/s0 on parameter b. The
ratio N/s0 has a distinctive minimum at b¼ 2.3 and reaches its
maximum at b¼ 0.8. Comparing results shown in Fig. 8a and b, we
find the best value of parameter b is between 0.7 and 0.8.
9.3. Comparison with the forward model

We additionally used the AmontonsWin program to generate an
artificial fault system under similar stress and strain boundary
conditions to those determined in the inverse procedure. We per-
formed eleven tests using all possible values of the constitutive
parameter b ranging from zero to one with resolution of 0.1. The
value of the parameter W was always set to one. The geometry of
the fault system produced by forward modeling came closest to
that observed in nature for b¼ 0.5 (Fig. 9b). In this case, there is
a remarkable similarity between the forward model and the
geometry of the fault system observed in the field (Figs. 6b and 9a).
The direct model, therefore, suggests a slightly smaller value of
parameter b than the inverse analysis. Comparing the results of
both the direct and inverse models shows that the best value of this
parameter can be estimated as b¼ 0.7� 0.2, which suggests that
the stress tensor is highly asymmetric.
Our case study clearly demonstrates that where asymmetric
stresses are operating, a large number of faults may be compatible
with a single kinematic episode, whereas the application of clas-
sical fault-slip inversion methods, which intrinsically assume
symmetric stress states, might erroneously suggest the existence of
several deformation phases.
9.4. Structural interpretation

A structural interpretation of the deformation style is graphi-
cally illustrated in Fig. 6b and c. In Fig. 6b, we calculated the
hypothetical direction of slip s! ¼ ð1=gs

i ÞL T : uðSÞ eliminating the
influence of the relative microrotation (see Eq. (14)). This shows
that most of the deformation was accommodated by dextral strike-
slip movements along WNW–ESE trending faults and sinistral
strike-slip movements along NE–SW trending faults. The complete
fault system accommodated shortening approximately in the N–S
(NNW–SSE to NNE–SSW) direction with strong CW relative
microrotations around a subvertical axis (Figs. 7 and 9a). Such
a deformation style can be interpreted as a superposition of two
deformation mechanisms, which are graphically illustrated in
Fig. 6c. The first deformation mechanism is characterized by the
interaction between the regional NW–SE trending dextral strike-
slip faults (such as the Avče Fault) and the WNW–ESE trending
faults which also accommodated dextral strike-slip movements
within the fault zone. The second deformation mechanism is
characterized by domino-style block rotations, indicating the
interaction between the regional NW–SE trending dextral strike-
slip faults and smaller NE–SW trending sinistral strike-slip faults.
The field of the relative microrotation was defined by this second
deformation mechanism. The positive value of the parameter W¼ 1
suggests that the microrotations exceeded the macrorotation, and
thus the fault blocks rotated clockwise faster than the macro-
rotation associated with the (macro)shear along the faults.
10. Discussion

10.1. Constitutive relation between the stress and strain

The cataclastic flow of rocks can be described within the theory of
plasticity and frictional flow of granular media extended to the



Fig. 7. Results of the Cosserat stress–strain inverse analysis of the Sinji vrh fault system for two different values of inversion parameters. See text for details.
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Cosserat continuum by using one of the several possible failure
criteria (see, for example, de Borst, 1993; Dai et al., 1996; Dartevelle,
2003; Lubliner, 1990, for a more extensive overview). The extension
of the J-2 plasticity model to the Cosserat continuum that we
developed here leads to a constitutive equation in which the
symmetric part of the stress tensor depends on the symmetric
macrodeformation tensor, whereas the skew-symmetric part of the
stress tensor depends on the relative microrotation tensor (Eq. (28)).
On closer examination this constitutive equation implies that the
stress is first-order rate-of-strain independent. Increasing the rate-
of-strain _ep to some degree does not affect the magnitude of the
stress, because the material parameters a and b are inversely
proportional to the rate-of-plastic multiplier _p, which is also
proportional to _ep. The derived constitutive equation is therefore
nonlinear.

Our numerical simulations performed with the AmontonsWin
program demonstrated that in strain fields characterized by non-
symmetric Cosserat strain and stress tensors, the geometry of
active fault systems is generally also non-symmetrical. The effect of
relative microrotations on the geometry of active fault systems was
recognized earlier by Twiss et al. (1991, 1993), and Twiss and Unruh
(1998, 2007). In this article we have shown that the strain is not the
only parameter controlling the geometry of fault systems. The
geometry also depends on the stress tensor, which in the Cosserat
continuum is usually non-symmetric (Fig. 5). Our J-2 plasticity
model shows that the asymmetry of the stress tensor depends on
the relative microrotation tensor and on constitutive parameters
Fig. 8. (a) Dependence of the number of kinematically and mechanically compatible faults N
parameter b. s0 is the standard deviation of the misfit between predicted and actual direction
with maximum number of compatible faults N and/or maximum ratio N/s0. See text for de
a and b. Such a model predicts anisotropic cataclastic flow and
formation of asymmetric fault systems with a geometry remarkably
similar to that of natural fault systems (Figs. 5e and 9), for both
symmetric and asymmetric stresses.

10.2. How do we find the best values of the constitutive parameters
a and b ?

The best values of the constitutive parameters a and b, needed in
the inversion procedure, can be found in two ways. First, the grid-
search method can be performed for all possible values of param-
eter b ranging from zero to one and with a¼ 1� b. The best values
of these parameters are identified when the object function has the
highest value. While this automatic procedure can find a mathe-
matically optimal solution, we do not prefer it, because it does not
allow a satisfying structural interpretation. Our recommended
workflow is to repeat the inversion procedure for all possible values
of parameter b ranging from zero to one with resolution of 0.1
(eleven tests). In this way the numerical stability and dependence
of the inversion results on parameters a and b can be directly
observed. The best inversion results (the optimal value of param-
eter b) are characterized by the largest number of kinematically and
mechanically compatible faults N and the largest ratio N/s0, where
s0 is the standard deviation of the misfit between predicted and
actual direction of slip along the faults. Varying the inversion
parameters s, D, a, b, f1, and f2 for a small and reasonable amount
also allows us to estimate the confidence limits for orientation of
on the constitutive parameter b. (b) Dependence of the ratio N/s0 on the constitutive
of slip along the faults. The best value of the parameter b leads to the inversion results

tails.



Fig. 9. Comparison of the Sinji vrh fault system with the fault system modeled using AmontonsWin. (a) The field data (see also Fig. 6b). (b) The fault system generated with
AmontonsWin as predicted by the Cosserat theory for asymmetrical state of stress. See text for details.
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kinematic axes, the relative magnitude of principal strains and
stresses, and the magnitude and direction of the relative micro-
rotation. The results are reliable when they are numerically stable
and are in agreement with other geological data.

The second reference point on the best values for constitutive
parameters a and b are the results of forward modeling with the
AmontonsWin computer program. There is a strong relationship
between the geometry of fault systems and asymmetry of the stress
tensor (see, for example, Figs. 5e, 7 and 9). For correct values of
parameters a, b and f2 (angle of friction), the modeled fault system
geometry will be similar to that observed in the field. Of course, this
approach only works for neoformed faults, as the geometry of
reactivated fault systems is controlled by orientation of the pre-
existing planes of weakness in the rock and can therefore consid-
erably differ from that predicted by the Cosserat theory.

The reliability of the inversion results and the values of the
constitutive parameters can also be verified using the Multiple-slip
kinematic method (Žalohar and Vrabec, 2008), which can be
extended to the Cosserat continuum (Žalohar, 2008). The Multiple-
slip method allows for independent calculation of the orientation
and amount of the relative microrotation. The exact description of
the Cosserat extension of the Multiple-slip method is complicated,
however, and would considerably exceed the scope of the present
article.
11. Conclusions

1. The relative microrotation of fault-bounded blocks is directly
related to the direction of slip along the faults and to the
asymmetry of the active fault system, as recognized by Twiss
et al. (1991, 1993) and Twiss and Unruh (1998, 2007).
Symmetric fault systems can be active in the strain field char-
acterized by zero relative microrotation. With increasing rela-
tive microrotation, the fault systems become increasingly
asymmetrical. In addition, we discovered that the geometry of
fault systems is defined not only by the strain, but also by the
degree of asymmetry of the stress tensor.

2. The skew-symmetric component of stress only influences the
shear stress on the fault planes. Increasing asymmetry of the
stress tensor will consequently increase the shear stress, which
can activate faults in less favorable orientations with respect to
the principal axes of the macrostrain tensor, without the
requirement for low residual friction values along those faults.
3. Classical determinations of principal paleostress directions
become of little use when the paleostress tensor is highly
asymmetrical. In such cases, the stress tensor does not have
three real-valued principal directions defining orientation of
planes with zero shear stress. The Cosserat model of fault
reactivation suggests that the inversion of fault-slip data in fact
constrains principal strain axes (kinematic axes) of the mac-
rostrain tensor and the direction and relative magnitude of
relative microrotation. The paleostress state can be recon-
structed from the constitutive equation and may be used only
as a tool for analyzing fault reactivation.

4. At least in some cases, there is a remarkable consistency
between predictions of the Cosserat model of fault reactivation
and natural fault-slip patterns and fault system geometries. We
presented an example of a natural fault system which suggests
(1) that faulted rocks can behave as the Cosserat continuum
characterized by non-zero relative microrotations, and (2) that
natural fault systems can form in asymmetric stress fields.
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